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Abstraet-A finite element formulation for solving general three-dimensional consolidation prob­
lems using variational concepts is presented. The formulation involves coupled displacement and
pore pressure fields and has been numerically implemented to analyze boundary value problems of
axisymmetric (torsionless) and plane strain configurations. Three numerical examples are discussed.

I. INTRODUcrION

The behavior of soils is governed by the difference between the total stresses acting on the
soil mass and the pore pressures. In most practical field cases it is necessary to describe the
effective stress field to characterize the strength and defonnation properties of the soil.
Although the no-flow (undrained) and the free-flow (drained) conditions can be analyzed
using a single-phase continuum fonnulation, consideration of the two-phase soil-water
relationship in a saturated soil medium is essential in characterizing the soil behavior during
the transient period of excess pore pressure dissipation.

Derivations of the governing equations coupling the displacement and pore pressure
fields can be presented either by direct application of the principle of virtual work, mini­
mization of the total potential energy, application of the principle of stationary potential,
or by a variational fonnulation. It is the objective of this paper to present a finite element
fonnulation for analyzing consolidation or diffusion type of problems using variational
concepts, and illustrate how such fonnulation can be implemented numerically in the
solution of initial boundary value problems.

2. FORMULATION

Consider a soil continuum in domain n and bounded by surface r. Part of its surface
rgj is subjected to a prescribed displacement function g;, while the remainder of its surface
r h is subjected to a traction hj. The same total surface r may also be divided into a portion
r;subjected to a prescribed pore pressure function r, and the remainder f. under an input
hydraulic flux of s. In symbolic fonn, assume that the following set relations hold (see
Fig. 1):

(1)

for i == I, ... , nsd' where n.d == number of spatial dimensions, 0 == null set, the symbols u
and n represent set union and intersection, respectively, and the overlines denote a closure.

2.1. Strong form
The strong fonn (S), or the classical statement of the model problem is presented

mathematically in rate fonn as follows (summation implied on repeated subscripts):

Given/;, gj, hj, rand s, find the functions Uj and p such that

in

1201

n (equilibrium), (2a)
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r
r,.

..t...r,
Fig. I. Problem domain and boundaries.

where

U;,i-Ev = 0 in n (continuity),

Uj =9; on r il ,

o-ijnj = h; on r
h"

p=; on r"
u;nj = S on r"

(2b)

(3a)

(3b)

(4a)

(4b)

Uj = ith (Cartesian) component of the displacement field function u,
p = pore pressure field function,

uij = (i,j) component of the symmetric (Cauchy) effective stress tensor (I, compression
positive,

/; = ith component of the effective body force C,
6v = volumetric strain, compression positive,
g; = ith component of the prescribed displacement g,
h; = ith component of the prescribed traction h,
r = prescribed pore pressure function,
s = prescribed velocity flux,

nj = direction cosine of the angle between the (Cartesian) axis i and the surface
normal.

Equations (2a) and (2b) are quasi-static rate equations involving effective stresses in a
fully saturated soil mass. Consequently, a two-phase water-soil structure is implied. Since
water is relatively incompressible compared with the soil skeleton, (2b) states that the rate
of volume change equals the rate '!t which water is squeezed out of the soil mass (see
Biot[2]).

2.2. Weak form
The weak form (W) or the variational counterpart of (S) involves the determination of

functions U; and p and the satisfaction of both' the differential equations (2a, b) and the
boundary conditions (3) and (4) on the basis oCweighted averages.

As a prelude to the statement of (W), consider a set of trial solutions

I; = {U;IU;EH',

cI> = {plpEH', Ii =; on r,},
(5)
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and a set of lI'dull/illg functions

E>; = {W;lw;EHI, U, = 0 on rgJ,
'P = {qlqEH 1

, q= 0 on rr},
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(6)

where HI is a set of functions with square-integrable first derivatives,t and W; and q are any
possible "virtual displacements" and "virtual pressures", respectively, in the context of a
virtual work formulation. The set symbol E means "belongs in" or "is an element of".

To develop the weak form of (S), (2a, b) are rewritten, thus:

(7a)

or,

(7b)

Equation (7a) can be verified by observing that the quantities inside the parentheses are
zero point-wise.

Using the divergence theorem and integrating by parts,

where w(iJ) is the symmetric part of the tensor gradient w;J' while dijn) = Ii; from traction
boundary condition (3b);

1qu . dO = -1 q ·u· dO+ 1qu·n drt,l ,r I I I

n r

1 -k,. 1= - q.; __'J PJ dO+ qs drs>
y". r,

upon substitution of Uin; = s from flow velocity boundary condition (4b).
Equation (8a) assumes a general constitutive equation of the form

(8b)

(9)

in which Cijlel is the rank-four material stress-strain tensor a~d iT?) is the stress relaxation rate
which arises due to temperature changes (e.g. cf. (9) with Duhamel-Neumann's generalized
form of Hooke's law in thermoelasticity[8, 11]) and/or time-dependent (creep) effects[4, 5].
Equation (8b) is obtained using Darcy's law for transient pore pressure dissipation given
by

(10)

where Yw = unit weight of water and ki) = (i,j) component of the permeability tensor k (the
negative sign implies that the flow goes in the direction of decreasing gradient).

t In general H" is a set of functions smooth enough to possess square-integrable nth derivatives.
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Substituting (8a), (8b) and i;, +- it", in (7b), the statement of the weak form (W) is
obtained as follows:

Given/" gj, hj, rand s as in (S), find Uj EYj and p E<I> such that for all Wj E0 j and q E'¥,

where w(jJ) and U(k,1) are the symmetric parts of the tensor gradients wiJ and Uk,l, respectively,
Equations (3a) and (4a) are the essential boundary conditions repeated explicitly in

(5) of the weak form, while (3b) and (4b) are the natural boundary conditions which
implicitly develop in (11) out of a variational procedure,

In abstract form, (11) is rewritten thus:

A(w,u)+(div w,P)-A(q,p)+(q, div 0) = (w,f)+(ow,aO)+(q,s)r+(w,h)r, (12)

where A(', .) and A(', .) are symmetric bilinear operators defined by

and (0, .) is an operator defined by

(0,.) =1(0.) dO,

(0, e)r = l (0.) dr.

(13a)

(l3b)

(l3c)

(I 3d)

The weak statement (11) of the model problem parallels that of physical modeling in
which stress and strain measurements are obtained on the basis of their average values over
a finite region, and not at any single point as suggested by the point-wise satisfaction of
(2a, b)[l].

2.3. Galerkin approximations
The Galerkin formulation provides the link between the weak form (9) and its finite

element counterpart by introducing the following approximations:

Let yh, eh, <l>h and 'Ph be the finite dimensional approximations of y, e, <I> and '¥,
respectively; i.e. yh c y, eh c e, <l>h c <I> and 'Ph c 'P, where the symbol c means "is a
subset of", and the superscript h suggests that these approximations are associated with
the discretization of domain Ointo a mesh of subdomains 0·.

The Galerkin form (G) of the model problem is stated as follows:

Given C, g, h, rand s as in (S), find

uh = Vh+ghEYh,

ph = eh + rh E<l>h,
(14)
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A(wh,yh)+(div Wh,Qh)_A(qh,Qh)+(tf, div yh)

= (wh, f) + (owh, 0'0)+ (qh, s)r + (wh, ')r

-[A(wh,gh)+(div Wh,rh)-A(qh,r")+(qh, div gh)], (15)

where vhE 0 hand Qh E 'Ph.
As an illustration, note that since vhE 0 h c:: 0 and Qh E 'Ph c:: '1', vr = 0 on r g and

Qh = 0 on r, because of (6). Hence, ur = O+dr =dr on r gi and ph = O+;h = ;h o~ r"
satisfying (14).

2.4. Matrix form
Introducing interpolatory expansions for vh and Qh and using parallel interpolations

for whand qh,

vh(X) = L Na(x)da , (16a)
aeq-q,

wh(x) = L Na(x)wa, (16b)
aeq-q.

Qh(X) = L Nb(x)Pb, (17a)
be<;-<;,

qh(X) = L Nb(x)qb, (17b)
be<;-<;,

where Na are the displacement shape functions associated with displacement node a and Nb

are the pressure shapefunctions associated with pressure node b; da is the nodal displacement
vector with elements {d h ... ,dn,Jaat a, Pb is the nodal pressure at b; (" -"g) and (~- ~r)

are the node numbers at which the displacements and pore pressures, respectively, are
unknown; wa and qh are any arbitrary non-zero counterparts ofda and Pb'

The arbitrariness of wa and qh leads to the matrix form (M) of the Galerkin equation,
written in segregated d-p form as

Kd+Gp = F,
GTd+Mp = ii,

(18a)

(l8b)

where the global arrays K, G, GT
, M, F and iI which emanate from (15) are given in

Table 1.
To express these global arrays explicitly on the element level, the (symmetric) stress

and strain tensors are vectorized in the order

Table I.

(l9a)

GLOBAL ARRAY TERMS IN GALERKIN EQUATION

A(Wh,yb)

(divwh,V')

(qh,divyh)

-A(qh,t')

(wh,r) + (awb,';:') + (wh,b)r

- [A(wh,gh) + (divwh,;h)J

(qh,s)r - [(qh,divgh) - A(qh,rhl]
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(19b)

respectively, while the rank-four stress-strain tensor Cijkl is reduced to a two-dimensional
matrix C.

Using the element nodal values de and pe,

II:~"

£ = - L Bad~,
a- I

II:~"

E:v = - L b~d~,
a= I

~.

grad p = L EbPh,
b= I

(20)

(21 )

(22)

where n:. and 1f.. are the number of element nodes interpolating u and p in the element
domain oe, respectively, E:v is the volumetric strain, grad p is the ns.rdimensional pressure
gradient vector, and matrix Ba is the strain-displacement matrix. The negative signs for 6

and E:v are consistent with the definition for compressive strains being positive.
In three-dimensional analysis,

B, 0 0

0 B 2 0

0 0 BJ
Ba =

B 2 B1 0

0 BJ B2

BJ 0 B,

b~ = {t, I, I,O,O,O} 'Ba ,

(23)

(24)

in which B; = oNa/ox" where Na is the displacement shape function associated with node
a, while

(25)

whereNb is the pressure shape function associated with pressure node b.
The global arrays K, G, GT

, M, Fand Aare then assembled from the following element
contributions (cf. Table I)t:

I. Element tangent stiffness matrix:

(26)

where ned is the number of displacement components for element e (= number of dis­
placement degrees of freedom per node x number ofdisplacement nodes), and C is the rank­
two stress-strain matrix obtained by contracting the indices of C1jlcl' The strain-displacement
matrix B consists of nodal submatrices Ba = [81> B2, ••• , B.), where nd is the number of
element displacement nodes.

t Note sign reversals in all terms containing (compressive) stress rates {UO} and pressures Qand r.
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2. Element coupling matrices:

1207

(27a)

(27b)

~ •• • T
where np is the number of element pressure nodes and N = {N I. N2, •..• Nn } (see

•(l7a, b».
3. Element flux matrix:

4. Element force vectors:

M c 11 T(n x n ) = - - E kE dO.
p p yO' (28)

Hin xI) = r :NTs dT - [- (Gc)T •elg - Mpr], (30)
p J~

where N is an array consisting of element shape functions Na such that u = Nd (cf. (l6a,
b»; elg is an (n.d x I) vector containing prescribed g-displacements, i.e. dg, = gi if gi is
prescribed and d" = 0, otherwise; p, and it, are (np x I) vectors containing prescribed r­
pressures and pressure rates, respectively (similar definitions as for el,).

2.5. Time integration
Suppose that the solution (dno Pn) is known at time tn. and that (l8a, b) can be

transformed into an incremental form in (ad, ap). A marching algorithm can then be
employed to obtain the solution time 1,,+ I'

Integrating (18a, b),

(3Ia)

(3Ib)

(32a)

(32b)

or

f{. ad+G 'ap = aF,

1'0+.
GT

• ad + M . p dt = aH~
I.

where f{ represents an average value of the tangent stiffness K over the time interval (tn, tn+ I)
(see, e.g. [9] for an evaluation off{ using a predictor-corrector algorithm). Factorization of
the global matrices G, GT, and M outside of the integral signs follows upon assumption
that the permeability components of k do not change with time.

Equation (32b) may be transformed into a similar incremental form as (32a) using a
discrete approximation to the remaining integral as follows:

(33)
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An algorithm that uses f3 = 0 for the above approximation is called an explicit Euler
algorithm. If f3 = 1, the algorithm is purely implicit. If f3 = 1/2, the approximation employs
the trapezoidal or midpoint rule. The above approximation provides an unconditionally
stable solution when f3 ~ 1/2[3] with optimum accuracy obtained when f3 = 1/2[4].

Using f3 as the integration parameter, a general incremental matrix equation is obtained,
VIZ.

(34)

where Po is the nodal pore pressure vector at the start of the increment.
A similar incremental matrix equation of the form (34) has also been obtained by

Small et al.[B] for the special case where dg = 0, Pr = 0 and i/o = 0 using the principle of
virtual work. The resulting system of simultaneous equations can be solved by any accept­
ably efficient numerical technique, say by Crout elimination[14].

3. NUMERICAL EXAMPLES

The following examples demonstrate the accuracy of the foregoing numerical procedure
using a finite element program, called SPIN 20, which employs the above integration
scheme. The parameter f3 was set to 1/2, facilitating an unconditionally stable solution for
any value of l!J.t. Quadrilateral elements were used with nine nodes (biquadratic Lagrangian)
interpolating the displacement field, and four nodes (bilinear) interpolating the pore pressure
field continuously across the element boundaries.t Standard Gaussian quadrature rules
were employed in the numerical integration, Le. 3 x 3 rule on element stiffness Ke and 2 x 2
rule on element matrices Ge, (Ge)T and Me.

In examples 3.1-3.3 the soil skeleton was assumed to be isotropic, homogeneous and
linearly elastic. In examples 3.1 and 3.2 Young's modulus E = 7280 and Poisson's ratio
v = 0.3, giving a constrained modulus Ec = 9800 (consistent units are implied). In example
3.3, v = 0.0, E = Ec = 104

•

3.1. One-dimensional elastic consolidation
Explicit solutions are available for problems involving consolidation in one dimension.

The average degree ofconsolidation is given by[12]

(35)

where the time factor Tv = cvt/H
2
, in which Cv is the coefficient ofconsolidation, t is the

natural time and H is half the distance between opposite drainage boundaries. The average
degree of consolidation also gives the ratio between the current vertical settlement and the
ultimate settlement at 100% pore pressure dissipation. A plot of '0 versus log Tv is shown
in Fig. 2.

Letting H = 1.0 and Cv= 1.0, then Tv = t; assuming Yw = 9.8, then the permeability
k = cvyw/Ec = 0.001. .

The numerical results, obtained from the ratio of the current to ultimate settlements,
are plotted in Fig. 2. Very good fit can be observed specifically at large values of T•. The
results for small Tv can be improved by subdividing l!J.t further into smaller increments.

3.2. Radial elastic consolidation, free strain
Explicit solutions are also available for the condition in which drainage goes radially,

while allowing the loaded surface to deform so that the stress distribution on the soil
remains constant. The average degree of consolidation for free-strain, radial drainage is

t See [4, 7, 101 on discontinuous pressure interpolation in incompressible applications.
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2
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TIME FACTOR. T"

Fig. 2. One-dimensional consolidation.
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(36)- ~ I fJ2TU= 1-4 L.. 2'e-· ",
n- I /3

where ±/3 are the roots of the equation Jo(P) = 0, in which Jo is a Bessel function of the
first kind and order zero. A plot of aversus Tv is shown in Fig. 3.

Letting the coefficient of radial consolidation c, = 1.0 and radius R = 1.0 (see Fig. 3),
the excess pore pressures were allowed to diffuse radially. The numerical results, obtained
as the weighted average (by volume) of the dissipated pore pressure, are also plotted in
Fig. 3. The same conclusion can be drawn as in example 3.1.

3.3. Two-dimensional plane strain consolidation ofan infinite elastic half-space
A closed form solution is available for consolidation of an infinite elastic half-space

subjected to a uniform strip load[6]. Figure 4 shows the problem geometry as represented
by a mesh of 100 finite elements. In the following, Cv = 1.0, Y•. = 9.8, kll = k 22 = cVYM/IEe =
9.8 x 10-4,k '2 = k 21 = 0.0.

Case a. Strip load applied instantaneously. Defining the dimensionless time factor
T = c,.tlB2

, where B is half the width of the strip load. the load-time function for the

o ,.....-"""T'".....,~"""T'"'rT..,...,.r----r-...,.."""T'"~r"'T"'....

-IXACT. RE'. 12
o ...IN 2D

100 '--_--'---'--'...........I..I.<L....._...................&...<I""l,,;l..

0.01 0.10 1.0
TIME FACTOR. T"

Fig. 3. Radial consolidation, free strain.
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DRAINAGE "l ~

[ Lti
~ ~

~ ~
~ ~

•

~~ ....
• DISPLACEMENT NODE
o PORE PRESSURE NODE

Fig. 4. Two-dimensional plain strain consolidation. problem geometry.

condition in which the load is applied instantaneously is a step function varying from zero
at T = 0.0 to its full value p at T:: To = 0+ (Fig. 5). A plot of the normalized centerline
pore pressure at depth z :: 0.5B versus Tis shown in Fig. 5.

Superimposed in Fig. 5 are the results of a numerical test consisting of 10 variable
time steps, the first time step simulating a semiundrained condition in which !J.T:: 10- 10

,

generating an initial pore pressure:: 0.712p (exact = 0.70Sp for the totally undrained case).
Excellent agreement between the numerical and analytical results can be observed.

Case b. Strip load applied gradually. To investigate the influence of the rate of loading,
two computer runs were made with the strip load attaining its full value p gradually with
time. Assuming that the in tensi ty of the strip load increases linearly with the time factor T,

1.0 ,.....---r------,.----.,..----,

100.01

0.2

0.1

,
- EXACT, REF. 6 ,

o SPIN 20 I
I

P
I

I
To-til

~/J To~~
~/ ....,A

O.OIl:.:-:;;;.;;;;-rr~_=c.:.·_;;;...·otr_ _.l .....I._ _O...;;;..;;z:l

0.001

0.3

0.4

0.6

!ap 0.&

0.9

0.7

Fig. 5. Centerline pore pressure at depth z = 0.5B beneath a strip load.
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plots of excess pore pressures versus time for the cases in which To = 0.1 and To = 1.0 are
shown in Fig. 5. Since no significant dissipation ofexcess pore pressures occurs until T ~ 0.1
in Case a, it can be concluded that the peak value of excess pore pressure at the centerline
where == 0.5B can be markedly reduced if the strip load is applied gradually such that
To> 0.1.

4. SUMMARY AND CONCLUSION

The transient condition of pore pressure dissipation has been analyzed in this report
by considering the two-phase soil-water structure of a saturated soil mass. The governing
matrix equation for use in the finite element analysis has been derived using variational
concepts involving coupled displacement and pore pressure fields. A family of trapezoidal
integration, specified by the integration parameter p, was employed to facilitate the
evolution of the solution with time. The accuracy of the above integration scheme has
been demonstrated in one- and two-dimensional applications using a finite element
program which employs the foregoing numerical procedure.
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